34 research outputs found

    Caching-Aided Collaborative D2D Operation for Predictive Data Dissemination in Industrial IoT

    Get PDF
    Industrial automation deployments constitute challenging environments where moving IoT machines may produce high-definition video and other heavy sensor data during surveying and inspection operations. Transporting massive contents to the edge network infrastructure and then eventually to the remote human operator requires reliable and high-rate radio links supported by intelligent data caching and delivery mechanisms. In this work, we address the challenges of contents dissemination in characteristic factory automation scenarios by proposing to engage moving industrial machines as device-to-device (D2D) caching helpers. With the goal to improve reliability of high-rate millimeter-wave (mmWave) data connections, we introduce the alternative contents dissemination modes and then construct a novel mobility-aware methodology that helps develop predictive mode selection strategies based on the anticipated radio link conditions. We also conduct a thorough system-level evaluation of representative data dissemination strategies to confirm the benefits of predictive solutions that employ D2D-enabled collaborative caching at the wireless edge to lower contents delivery latency and improve data acquisition reliability

    On the Temporal Effects of Mobile Blockers in Urban Millimeter-Wave Cellular Scenarios

    Get PDF
    Millimeter-wave (mmWave) propagation is known to be severely affected by the blockage of the line-of-sight (LoS) path. In contrast to microwave systems, at shorter mmWave wavelengths such blockage can be caused by human bodies, where their mobility within environment makes wireless channel alternate between the blocked and non-blocked LoS states. Following the recent 3GPP requirements on modeling the dynamic blockage as well as the temporal consistency of the channel at mmWave frequencies, in this paper a new model for predicting the state of a user in the presence of mobile blockers for representative 3GPP scenarios is developed: urban micro cell (UMi) street canyon and park/stadium/square. It is demonstrated that the blockage effects produce an alternating renewal process with exponentially distributed non-blocked intervals, and blocked durations that follow the general distribution. The following metrics are derived (i) the mean and the fraction of time spent in blocked/non-blocked state, (ii) the residual blocked/non-blocked time, and (iii) the time-dependent conditional probability of having blockage/no blockage at time t1 given that there was blockage/no blockage at time t0. The latter is a function of the arrival rate (intensity), width, and height of moving blockers, distance to the mmWave access point (AP), as well as the heights of the AP and the user device. The proposed model can be used for system-level characterization of mmWave cellular communication systems. For example, the optimal height and the maximum coverage radius of the mmWave APs are derived, while satisfying the required mean data rate constraint. The system-level simulations corroborate that the use of the proposed method considerably reduces the modeling complexity.Comment: Accepted, IEEE Transactions on Vehicular Technolog

    Evaluation of聽the聽New and聽Accepted Customers Blocking Probabilties in聽a聽Network of聽Resource Loss Systems

    Get PDF
    The paper considers a network of resource loss systems (ReLS) with random resource requirements and two types of nodes. Customers initially arrive to the first type of nodes, where they receive service for exponentially distributed time. The service of customers can be interrupted. In this case, they are rerouted to the second type of nodes, where they receive service for an exponentially distributed time. Once the service is completed, they return back to the original node and continue its service. Customers require a random volume of limited resources. If there are not enough of unoccupied resources upon the arrival of a customer, then it is considered lost. Similarly, if an accepted customer is rerouted to another node and finds that there are not enough of resources to meet its requirements, then it is also lost. In this paper, we provide an approach to analyze the stationary behavior of the considered system, as well as establish expressions for the new customer loss probability and the accepted customer loss probability. The developed model has a wide range of applications in performance evaluation of fifth generation (5G) New Radio (NR) access networks. To this aim, we investigate the response of the considered service system in detail by revealing critical dependencies and trade-offs between input system parameters and performance measures of interest.acceptedVersionPeer reviewe

    A Tutorial on Mathematical Modeling of 5G/6G Millimeter Wave and Terahertz Cellular Systems

    Get PDF
    Millimeter wave (mmWave) and terahertz (THz) radio access technologies (RAT) are expected to become a critical part of the future cellular ecosystem providing an abundant amount of bandwidth in areas with high traffic demands. However, extremely directional antenna radiation patterns that need to be utilized at both transmit and receive sides of a link to overcome severe path losses, dynamic blockage of propagation paths by large static and small dynamic objects, macro-and micromobility of user equipment (UE) makes provisioning of reliable service over THz/mmWave RATs an extremely complex task. This challenge is further complicated by the type of applications envisioned for these systems inherently requiring guaranteed bitrates at the air interface. This tutorial aims to introduce a versatile mathematical methodology for assessing performance reliability improvement algorithms for mmWave and THz systems. Our methodology accounts for both radio interface specifics as well as service process of sessions at mmWave/THz base stations (BS) and is capable of evaluating the performance of systems with multiconnectivity operation, resource reservation mechanisms, priorities between multiple traffic types having different service requirements. The framework is logically separated into two parts: (i) parameterization part that abstracts the specifics of deployment and radio mechanisms, and (ii) queuing part, accounting for details of the service process at mmWave/THz BSs. The modular decoupled structure of the framework allows for further extensions to advanced service mechanisms in prospective mmWave/THz cellular deployments while keeping the complexity manageable and thus making it attractive for system analysts.publishedVersionPeer reviewe

    A Tutorial on Mathematical Modeling of 5G/6G Millimeter Wave and Terahertz Cellular Systems

    Get PDF
    Millimeter wave (mmWave) and terahertz (THz) radio access technologies (RAT) are expected to become a critical part of the future cellular ecosystem providing an abundant amount of bandwidth in areas with high traffic demands. However, extremely directional antenna radiation patterns that need to be utilized at both transmit and receive sides of a link to overcome severe path losses, dynamic blockage of propagation paths by large static and small dynamic objects, macro-and micromobility of user equipment (UE) makes provisioning of reliable service over THz/mmWave RATs an extremely complex task. This challenge is further complicated by the type of applications envisioned for these systems inherently requiring guaranteed bitrates at the air interface. This tutorial aims to introduce a versatile mathematical methodology for assessing performance reliability improvement algorithms for mmWave and THz systems. Our methodology accounts for both radio interface specifics as well as service process of sessions at mmWave/THz base stations (BS) and is capable of evaluating the performance of systems with multiconnectivity operation, resource reservation mechanisms, priorities between multiple traffic types having different service requirements. The framework is logically separated into two parts: (i) parameterization part that abstracts the specifics of deployment and radio mechanisms, and (ii) queuing part, accounting for details of the service process at mmWave/THz BSs. The modular decoupled structure of the framework allows for further extensions to advanced service mechanisms in prospective mmWave/THz cellular deployments while keeping the complexity manageable and thus making it attractive for system analysts.publishedVersionPeer reviewe

    Dynamic Topology Organization and Maintenance Algorithms for Autonomous UAV Swarms

    Get PDF
    The swarms of unmanned aerial vehicles (UAV) are nowadays finding numerous applications in different fields. While performing their missions, UAVs have to rely on external positioning information to maintain connectivity and communications between units in a swarm. However, some of the critical applications such as rescue missions are performed in locations, where this information is partially or fully not available, e.g., deep woods, mountains, indoors. In this paper, we propose a method for dynamic topology organization and maintenance in UAV swarms. In addition to the baseline functionality, we also design advanced features required for dynamic swarms merging and disjoining, making it suitable for practical applications. Specifically, the proposal is based on the virtual coordinates system allowing for the utilization of conventional geographical routing algorithms. We test the proposed algorithm in different swarm conditions to illustrate that: (i) it is insensitive to distance estimates up to at least 30% allowing for simple estimation techniques, (ii) the accuracy of the topology inference is at least 90% even under impairments caused by mobility and temporal loss of connectivity, and (iii) the impact of the developed merging algorithm for swarms lasts for multiple tens of time steps that correspond to just few seconds in practice. The set of developed algorithms can be utilized to ensure always connected topology in conditions where positioning information is partially or fully unavailable.acceptedVersionPeer reviewe

    Performance Assessment of DECT-2020 NR and Classic DECT Coexistence Mechanisms

    Get PDF
    The recently standardized ETSI DECT-2020 New Radio (NR) technology promises to enable operator-independent Internet-of-Things (IoT) services. One of the supported operating bands is the 1880 - 1900 MHz band where IoT devices use one or more 1.728 MHz wide channels for multi-hop communications. It has been shown that such systems scale well to satisfy the requirements of 5G massive machine-type communications (mMTC). During the standardization process, the coexistence with classic DECT technology was addressed but the benefits of different options have not been deeply explored. In this paper, by utilizing system-level simulation techniques we evaluate several coexistence solutions for DECT-2020 and classic DECT systems including conventional listen-before-talk access (LBT), last-minute scan, and scheduling-based mechanisms. Our numerical results illustrate that the standard LBT operation ensures excellent performance with no more than 2% of packet drops for classic DECT, and still results in satisfactory DECT-2020 operation under 25% of resources allocated to classic DECT. The use of last-minute-scan leads to drastic performance degradation of DECT-2020 (by more than 10% in terms of packet drops) as compared to the standard LBT-only operation. Finally, a scheduling-based mechanism allows to improve the LBT performance for DECT-2020 devices by 2-5%.Peer reviewe

    The Use of Machine Learning Techniques for Optimal Multicasting in 5G NR Systems

    Get PDF
    Multicasting is a key feature of cellular systems, which provides an efficient way to simultaneously disseminate a large amount of traffic to multiple subscribers. However, the efficient use of multicast services in fifth-generation (5G) New Radio (NR) is complicated by several factors, including inherent base station (BS) antenna directivity as well as the exploitation of antenna arrays capable of creating multiple beams concurrently. In this work, we first demonstrate that the problem of efficient multicasting in 5G NR systems can be formalized as a special case of multi-period variable cost and size bin packing problem (BPP). However, the problem is known to be NP-hard, and the solution time is practically unacceptable for large multicast group sizes. To this aim, we further develop and test several machine learning alternatives to address this issue. The numerical analysis shows that there is a trade-off between accuracy and computational complexity for multicast grouping when using decision tree-based algorithms. A higher number of splits offers better performance at the cost of an increased computational time. We also show that the nature of the cell coverage brings three possible solutions to the multicast grouping problem: (i) small-range radii are characterized by a single multicast subgroup with wide beamwidth, (ii) middle-range deployments have to be solved by employing the proposed algorithms, and (iii) BS at long-range radii sweeps narrow unicast beams to serve multicast users.acceptedVersionPeer reviewe

    Method for calculating numerical characteristics of two devices interference for device-to-device communications in a wireless heterogeneous network [袦袝孝袨袛 袪袗小效袝孝袗 啸袗袪袗袣孝袝袪袠小孝袠袣 袠袧孝袝袪肖袝袪袝袧笑袠袠 袛袙校啸 袙袟袗袠袦袨袛袝袡小孝袙校挟些袠啸 校小孝袪袨袡小孝袙 袙 袘袝小袩袪袨袙袨袛袧袨袡 袚袝孝袝袪袨袚袝袧袧袨袡 小袝孝袠]

    No full text
    In wireless networks, one of the key performance metrics is the signal to noise ratio, SINR. As this metric highly depends on the distance between the interfering devices, the problem of SINR estimation is often reduced to the calculation of a triangle's side length, where the vertices represent the interacting devices. This paper addresses the problem of calculating the numerical characteristics of the signal to interference ratio for a pair of interfering devices determined by the known distributions of distances between the entities in question. The proposed method can be used as a basis for analyzing heterogeneous networks, including the analysis of device-to-device (D2D) communications as one of the interference-limited cases. 漏 2015 Federal Research Center "Computer Science and Control" of Russian Academy of Sciences. All rights reserved
    corecore